

(An Autonomous Institution - AFFILIATED TO ANNA UNIVERSITY, CHENNAI) S.P.G.Chidambara Nadar - C.Nagammal Campus S.P.G.C. Nagar, K.Vellakulam – 625 701 (Near VIRUDHUNAGAR).

B.E. MECHANICAL ENGINEERING REGULATIONS – 2021 AUTONOMOUS SYLLABUS CHOICE BASED CREDIT SYSTEM III TO IV SEMESTER CURRICULUM AND SYLLABI

VISION:

To make the Department of Mechanical Engineering the unique of its kind in the field of Research and Development activities in the prominent filed of Mechanical Engineering in this part of the world.

MISSION:

To impart highly innovative and technical knowledge in the field of Mechanical Engineering to the urban and unreachable rural student folks through Total Quality Education.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- **PEO 1:** Graduates of the Programme will excel in Technical Knowledge and apply Innovative Skills in the field of Mechanical Engineering.
- **PEO 2:** Graduates will contribute to the Technological Development and Research Activities through "Total Quality Education".
- **PEO 3:** Graduates of the Programme will accomplish the Leadership Qualities and Social Responsibilities through "Life Long Learning".

PROGRAM OUTCOMES:

After going through the four years of study, the Mechanical Engineering graduates will have the ability to

POs	Graduate Attribute	Programme Outcome
		Apply the knowledge of mathematics, science, engineering fundamentals and an engineering
1	Engineering knowledge	specialization to the solution of complex engineering
		problems.
		Identify, formulate, review research literature, and
2		analyze complex engineering problems reaching
	Problem analysis	substantiated conclusions using first principles of
		mathematics, natural sciences, and engineering
		sciences.
		Design solutions for complex engineering problems and
3 3 solutions	Design/development of	design system components or processes that meet the
	solutions	specified needs with appropriate consideration for the
		public health and safety, and the cultural, societal, and
		environmental considerations.
		Use research-based knowledge and research methods
4	Conduct investigations	including design of experiments, analysis and
•	of complex problems	interpretation of data, and synthesis of the information to
		provide valid conclusions
		Create, select, and apply appropriate techniques,
		resources, and modern engineering and IT tools
5	Modern tool usage	including prediction and modelling to complex
		engineering activities with an understanding of the
		limitations
		Apply reasoning informed by the contextual knowledge
6	The engineer and	to assess societal, health, safety, legal and cultural
0	society	issues and the consequent responsibilities relevant to
		the professional engineering practice

		Understand the impact of the professional engineering				
		onderstand the impact of the professional engineering				
7	Environment and	solutions in societal and environmental contexts, and				
'	sustainability	demonstrate the knowledge of, and need for sustainable				
		development.				
		Apply ethical principles and commit to professional				
8	Ethics	ethics and responsibilities and norms of the engineering				
		practice.				
0	Individual and team	Function effectively as an individual, and as a member or				
9	work	leader in diverse teams, and in multidisciplinary settings.				
		Communicate effectively on complex engineering				
		activities with the engineering community and with				
		society at large, such as, being able to comprehend and				
10	Communication	write effective reports and design documentation, make				
		effective presentations, and give and receive clear				
		instructions.				
		Demonstrate knowledge and understanding of the				
	Droigot monogoment	engineering and management principles and apply these				
11	Project management	engineering and management principles and apply these				
	and finance	to one's own work, as a member and leader in a team, to				
		manage projects and in multidisciplinary environments.				
		Recognize the need for, and have the preparation and				
12	Life-long learning	ability to engage in independent and life-long learning in				
		the broadest context of technological change.				

PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **PSO1:** Graduates will be able to Create and Analyze the Research and Development activites related to Design and Manufacturing.
- **PSO2:** Graduates will be able to Design and Develop need based products in Mechanical Engineering and allied Industries.

S.P.G.C. Nagar, K.Vellakulam – 625 701 (Near VIRUDHUNAGAR).

REGULATIONS - 2021 CHOICE BASED CREDIT SYSTEM B.E. MECHANICAL ENGINEERING III & IV SEMESTER CURRICULUM

SEMESTER III

S.NO.	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Р	С
THEORY								
1	GE2201	Design Thinking	EM	3	3	0	0	3
2	ME2201	Engineering Mechanics	PC	3	3	0	0	3
3	ME2202	Engineering Thermodynamics	PC	3	3	0	0	3
4	EE2208	Electrical Drives and Control	ES	3	3	0	0	3
5	ME2203	Fluid Mechanics and Machinery	PC	3	3	0	0	3
6	ME2204	Manufacturing Technology –I	PC	3	3	0	0	3
7		Audit Course	AU	3	3	0	0	0
PRACT	TICALS							
8	ME2205	Computer Aided Machine Drawing	PC	4	0	0	4	2
9	EE2209	Electrical Engineering Laboratory	ES	4	0	0	4	2
10	EM2202	Interpersonal skills -	HS	2	0	0	2	1
		Listening and speaking	TOTAL	31	21	0	10	23

S.NO.	COURSE CODE	COURSE TITLE	CATE GORY	CONTACT PERIODS	L	Т	Р	С
THEORY					I	1	L	
1	MA2254	Probability Statistics and Numerical methods	BSC	4	3	1	0	4
2	ME2251	Engineering Materials and Metallurgy	PCC	3	3	0	0	3
3	ME2252	Manufacturing Technology-II	PCC	3	3	0	0	3
4	ME2253	Strength of Materials for Mechanical Engineers	PCC	3	3	0	0	3
5	ME2254	Theory of Machines	PCC	4	3	1	0	4
6	ME2255	Thermal Engineering	PCC	3	3	0	0	3
7	GE2251	Quantitative Aptitude and Reasoning	EM	1	1	0	0	0
8		Tamil and Technology	AU	1	1	0	0	1
PRACT	TICALS			·				
9	ME2256	Fluid Mechanics and strength of materials laboratory	PCC	3	0	0	3	1
10	ME2257	Manufacturing Technology Laboratory	PCC	3	0	0	3	1
11	ME2258	Theory of Machines Laboratory	PCC	3	0	0	3	1
			TOTAL	31	18	2	9	24

SEMESTER IV

Course Code	Course Name	L	Т	Р	C
GE2201	DESIGN THINKING	3	0	0	3

Category: Employability Enhancement Courses

a. Preamble

This course introduces the various principles of design thinking to achieve an effective design and to examine the implementation of the model or process for its successful operation.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Describe the basic principles of design and various stages of	K2
COI	design thinking for better conceiving of idea and refinement.	
CO2	Elucidate the concepts of idea generation and refinement.	K3
CO3	Apply various prototype models for solving complexproblems.	K3
	Analyze real-time problems for effective design, implementation	K3
CO4	and operation.	
	Device idea/solution towards development of a prototypefor a	K4
CO5	chosen problem of interest.	

c. Course Syllabus

Total: 45 Periods

9

9

9

INTRODUCTION TO DESIGN THINKING

Introduction - Product life cycle – Design Ethics – Design Process – Stages in design thinking: Immersion, Analysis and synthesis, Ideation, Prototyping.

IDEA GENERATION AND REFINEMENT

Basic design - directions - Themes of thinking - Inspiration and references - Brainstorming
Value - Inclusion - Sketching - Presenting ideas - Thinking in images - Thinking in signs
Appropriation - Personification - Visual metaphors - Modification - Thinking in words - Words and language - Thinking in shapes - Thinking in proportions - Thinking in color - Outside the Box.

PROTOTYPING

Developing designs - Types of prototypes - Prototyping for Designing Complex Systems

- The Efficacy of Prototyping under Time Constraints.

IMPLEMENTATION

Format - Materials - Finishing - Media - Scale - Series/Continuity - Emerging Landscapes of Design - Real-Time Design Interaction Capture and Analysis - Enabling Efficient Collaboration in Digital Design - Spaces Across Time and Distance - Software used in Developing in Virtual Environments.

DESIGN THINKING IN VARIOUS SECTORS

Design & Development of Prototypes for Wall Plastering, Rubber shredding, Separation of Corn seeds, Electric vehicles, Smart gates, Burglar alarm, Tyre pressure monitor, Development of Online Voting System, Online Proctoring System, Online Health Monitoring System, IoT based Home Automation and any other problem of interest in your domain.

d. Activities

Students shall be exposed to the different aspects of design thinking, prototyping and idea implementation

e. Learning Resources

Text Books

- 1. Binder, T., De Michelis, G., Ehn, P., Jacucci, G., Linde, P., and Wagner, I., *Design things*, MIT press, 2011.
- 2. Ambrose, G., and Harris, P., *Basics Design: Design thinking*, Bloomsbury Publishing, 2009.

Reference Books

- 1. Meinel, C., and Leifer, L. (Eds.)., Understanding Innovation, Springer, 2011.
- Plattner, H., Meinel, C., and Leifer, L. (Eds.)., *Design thinking: understand*improve-apply, Springer Science & Business Media, 2010.
- Moran, T. P., and Carroll, J. M., L. Design Rationale: Concepts, Techniques, and Use, Erlbaum Associates Inc., 1996.
- 4. Cross, N., Chichester, Developments in Design Methodology, Wiley, 1984.

Web Resources:

- https://www.designsociety.org/download-publication/39626/Design prototyping 1. of systems.
- https://www.interaction-design.org/literature/article/5-stages-in-the-design thinking-process.

9

Course Code	Course Name	L	Т	Р	С
ME2201	ENGINEERING MECHANICS	3	0	0	3

Category: Professional core courses

a. Preamble

This course promotes the students to understand basic concepts of force and its relative effects in engineering problems. It also helps in developing the capacity to predict the effect of force and motion while carrying out the design in Mechanical engineering.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	CO. No. Course outcome Apply basic engineering principles such as laws of mechanics			
	Apply basic engineering principles such as laws of mechanics			
CO1	and vector calculus for solving problems related to particles at	K3		
	rest.			
	Examine the various reactive forces and couples for			
CO2	equilibrium of rigid bodies using free body diagram.	K3		
	Determine the various section properties (Centroid, Moment of			
CO3	Inertia, Product Moment of Inertia and Mass moment of Inertia)	K3		
	for simple and composite sections.			
	Solve simple application problems related to dynamics of			
CO4	particles (velocity, acceleration, forces that induce motion and	K3		
	work done).			
	Calculate the frictional forces exerted when a body issliding &			
CO5	rolling over another body.	K3		

c. Course Syllabus

Total: 45 Periods

9

9

BASICS AND STATICS OF PARTICLES

Introduction – Units and Dimensions – Laws of Mechanics – Lami's theorem, Parallelogram and triangular Law of forces - Vectorial representation of forces – Vector operations of forces -additions, subtraction, dot product, cross product – Coplanar Forces – rectangular components -Equilibrium of a particle – Forces in space – Equilibrium of a particle in space – Equivalent systems of forces – Principle of Transmissibility.

EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports –Action and reaction forces –stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis – Vectorial representation of moments and couples – Scalar components of a moment – Varignon's theorem – Single equivalent force -Equilibrium of Rigid bodies in two dimensions.

PROPERTIES OF SURFACES AND SOLIDS

Centroid and Moment of Inertia – Centroid of lines and areas – Theorems of Pappus - Parallel axis theorem and perpendicular axis theorem for Second moment of Plane area -First and Second moment of plane area, Principal Moment of Inertia for T section- I section, - Angle section, Hollow section by using standard formula. Mass moment of Inertia for prismatic, cylindrical and spherical solids - Relation to area moments of inertia.

DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Curvilinear motion - Newton's laws of motion – Work Energy Equation– Impulse and Momentum – Impact of elastic bodies.

FRICTION

Friction force – Laws of sliding friction – equilibrium analysis of simple systems with sliding friction – wedge friction-. Rolling resistance

d. Activities

Students shall be given exposure to understand the concepts of force and motion behaviour of objects by framing the basic equations using Newton's Law of Motion.

e. Learning Resources

Text Books

- 1. Beer, F.P and Johnston Jr. E.R., *Vector Mechanics for Engineers (In SI Units): Statics and Dynamics*, Tata McGraw-Hill Publishing Company, 2019.
- 2. Vela Murali, *Engineering Mechanics*, Oxford University Press, 2014.

Reference Books

- 1. Bhavikatti, S.S and Rajashekarappa, K.G., *Engineering Mechanics*, New Age International (P) Limited Publishers, 2021.
- 2. Hibbeller, R.C and Ashok Gupta, *Engineering Mechanics: Statics and Dynamics*, Pearson Education, 2017.
- Irving H. Shames and Krishna Mohana Rao. G., *Engineering Mechanics* Statics and Dynamics, Pearson Education, 2016.

9

9

- 4. Meriam J.L. and Kraige L.G., *Engineering Mechanics- Statics Volume 1*, *Dynamics- Volume 2*, John Wiley & Sons, 2017.
- 5. Rajasekaran S and Sankarasubramanian G., *Engineering Mechanics Statics and Dynamics*, Vikas Publishing House Pvt. Ltd, 2017.

Course Code	Course Name	L	Т	Р	C
ME2202	ENGINEERING THERMODYNAMICS	3	0	0	3

Category: Professional core courses

a. Preamble

This course promotes the students to understand basic concepts of thermodynamics and its applications.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Apply the zeroth and first law of thermodynamics in calculating	K3
CO1	the property changes for closed and open engineering systems.	
	Apply the principles of second law of thermodynamics in	K3
CO2	identifying the performance of thermal devices through energy,	
	entropy and availability calculations.	
	Evaluate the various properties of steam and derive	K3
CO3	thermodynamic relations of ideal and real gases.	
CO4	Apply Rankine cycle to steam power plant.	K3
CO5	Identify the properties of ideal, real gases and gasmixtures.	K3

c. Course Syllabus

Total: 45 Periods

9

9

BASICS, ZEROTH AND FIRST LAW OF THERMODYNAMICS

Review of Basics – Thermodynamic systems, Properties and processes, Thermodynamic Equilibrium - Heat and work transfer, definition and comparison, sign convention - Displacement work - P-V diagram - Thermal equilibrium - Zeroth law – Concept of temperature and Temperature Scales. First law – application to closed and open system - steady and unsteady flow processes.

SECOND LAW OF THERMODYNAMICS AND AVAILABILITY

Second law statements and its equivalence - Heat Engine, Refrigerator, Heat pump - Carnot cycle and Reversed Carnot cycle, Efficiency and COP – Carnot theorm – Entropy concept and causes - Clausius in equality - Change in entropy for reversible and irreversible processes - principle of increase in entropy. Available (Exergy) and Unavailable energy (Anergy) – Irreversibility – simple calculations.

PROPERTIES OF PURE SUBSTANCES AND THERMODYNAMIC **RELATIONS**

Steam - formation and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagrams. PVT surface. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart. Maxwell relations, Tds Equations, Energy equation, Joule-Thomson Coefficient, Clausius Clapeyron equation, Phase Change Processes.

STEAM POWER CYCLES

Ideal and actual Rankine cycles, Cycle Improvement Methods - Reheat and Regenerative cycles - performance calculations - Binary and Combined cycles (descriptive only).

IDEAL, REAL GASES AND GAS MIXTURES

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases- Reduced properties. Compressibility factor- Principle of Corresponding states -Generalized Compressibility Chart and its use - Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy.

d. Activities

Students shall be given exposure to understand the basic concepts of thermodynamics and its applications.

e. Learning Resources

Text Books

- 1. R.K.Rajput, Engineering Thermodynamics, Laxmi publications (P) Ltd., 2010.
- 2. Yunus A. Cengel and Michael A. Boles, Thermodynamics, Tata McGraw Hill, 2016.

Reference Books

- 1. Nag.P.K, Engineering Thermodynamics, Tata McGraw Hill, 2019.
- Claus Borgnakke and Richard E. Sonntag, Fundamentals of Thermodynamics, 2. Wiley Eastern, 2019.
- A.Valan Arasu, Engineering Thermodynamics, Vijay Nicole Imprints, 2016. 3.

9

Course Code	Course Name	L	Т	Р	C
EE2208	ELECTRICAL DRIVES AND CONTROL	3	0	0	3

Category: Foundation Course (Engineering Science)

a. Preamble

This course introduces the basic concepts of different types of electrical machines and their performance. It comprehensively details the different methods of starting D.C motors and induction motors. It describes the conventional and solid-state speed control of DC/AC drives.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
CO1	Explain the various classes of duty and Selection of power rating.	K2
	Summarize the working principle of DC &AC motors, their	
CO2	characteristics and its braking methods.	K2
CO3	Describe the Starting methods of DC &AC motors.	K2
	Illustrate the various methods of conventional and solid state	
CO4	speed control schemes of DC drives.	K2
	Illustrate the various methods of conventional and solid state	
CO5	speed control schemes of AC drives.	K2

c. Course Syllabus

Total: 45 Periods

INTRODUCTION

Basic Elements of a drive – Types of Electric Drives – factors influencing the choice of electrical drives – heating and cooling curves – Classes of duty – Selection of power rating for drive motors with regard to thermal overloading and Load variation factors.

DRIVE MOTOR CHARACTERISTICS

Torque – Multiquadrant operation- Speed-Torque characteristics of DC motors: Shunt, series and compound – Single Phase and Three Phase Induction Motors (Construction and Working)-Torque Slip Characteristics- Braking –Regenerative, Dynamic and Plugging.

STARTING METHODS

9

9

Need for starter-D.C Motor starters-3point and 4point starter– A.C. Motor starters- DOL starter, Star Delta starter, Autotransformer starter, Primary Resistance starter and Rotor Resistance starter.

CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES

Speed control of DC series and shunt motors – Armature and field control, Ward-Leonard control system - Controlled rectifier based drives-Single Phase half controlled and fully controlled- DC chopper based drive-Class A & Class E Chopper –applications.

9

9

CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES

Speed control of squirrel cage and slip ring induction motor – Voltage control, voltage / frequency control, slip power recovery scheme – Inverter based drives (Single phase and Three Phase).

d. Activities

Students shall be exposed to the different machine parts, starters and the drive in the college premises.

e. Learning Resources

Text Books

- 1. Nagrath .I.J. & Kothari .D.P, *Electrical Machines*, Tata McGraw-Hill, 2006.
- 2. Vedam Subrahmaniam, *Electric Drives (Concepts and Applications)*, Tata McGraw-Hill, 2010.

Reference Books

1. Singh. M.D., K.B.Khanchandani, Power Electronics, Tata McGraw-Hill, 2006.

Course Code	Course Name	L	Т	Р	C
ME2203	FLUID MECHANICS AND MACHINERY	3	0	0	3

Category: Professional Core Courses

a. Preamble

This course introduces basic concepts and performance of fluid characteristics, losses in fluid flows, turbine and pumps.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
CO1	Apply the fundamental properties of fluids and law of	K3
	conservation of mass, momentum, energy concepts.	
	Apply the boundary layer and Reynolds number concept toflow	K3
CO2	of fluids.	
	Apply the concept of Dimensional and model analysis tobuild	K3
CO3	a prototype.	
CO4	Calculate the efficiencies of Pelton, Francis, Kaplanturbines.	K2
CO5	Determine the performance of centrifugal pump.	K2

c. Course Syllabus

Total: 45 Periods

9

9

FLUID PROPERTIES AND FLOW CHARACTERISTICS

Units and dimensions – Properties of fluids - mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapour pressure, surface tension and capillarity. Flow characteristics – Concept of control volume – Application of continuity equation, energy equation and momentum equation – Significance of fluids in Hydraulics and Pneumatics.

FLOW THROUGH CIRCULAR CONDUITS

Hydraulic and energy gradient – Laminar flow through circular conduits and circular annuli
Boundary layer concepts – Types of boundary layer thickness – Darcy Weisbach equation
Friction factor – Moody diagram – Commercial pipes – Minor losses.

DIMENSIONAL AND MODEL ANALYSIS

Need for dimensional analysis – Methods of dimensional analysis – Similitude – Types of similitude – Dimensionless parameters – Application of dimensionless parameters – Model analysis.

TURBINES

Introduction to Impact of Jets – Euler's equation – Classification of turbines – heads and efficiencies – Velocity triangles. Axial, radial and mixed flow turbines. Pelton wheel, Francis turbine and Kaplan turbines – Working principles – Work done by water on the runner – Draft tube. Specific speed – unit quantities – Performance curves for turbines.

PUMPS

9

9

9

Theory of roto-dynamic machines – Rotary pumps – Classification – Centrifugal pumps – Working principle – Work done by the impeller – performance curves – various efficiencies – velocity components at entry and exit of the rotor – velocity triangles – Reciprocating pump – working principle (Descriptive only).

d. Activities

Students shall be exposed to proper selection of pump and turbine based on the requirement.

e. Learning Resources

Text Books

- 1. R.K. Bansal., *Fluid Mechanics & Hydraulic Machines*, Laxmi PublicationsPvt. Ltd., 2017.
- 2. Streeter, V. L. and Wylie E. B., Fluid Mechanics, Tata McGraw Hill, 2010.

Reference Books

- R.K.Rajput., A Textbook of Fluid Mechanics & Hydraulic Machines, S. Chand Publications, 2016.
- Robert W.Fox, Alan T. McDonald and Philip J.Pritchard., *Fluid Mechanics*, Wiley Publishers, 2016.

Course Code	Course Name	L	Т	Р	C
ME2204	MANUFACTURING TECHNOLOGY – I	3	0	0	3

Category: Professional Core Courses

a. Preamble

This course introduces the concepts of basic manufacturing processes and fabrication techniques, such as metal casting, metal joining, metal forming and manufacture of plastic components.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Apply the knowledge of different metal casting processes for	
CO1	casting simple components by considering its defects, merits and	K3
001	demerits.	
	Explain the appropriate selection of welding process forthe	
CO2	given situation, its construction and working principle.	K2
	Summarize the various hot working and cold workingmethods	
CO3	of metals.	K2
CO4	Explain various sheet metal making processes.	K2
	Apply the appropriate method of manufacturing simpleplastic	
CO5	components.	K3

c. Course Syllabus

Total: 45 Periods

9

9

METAL CASTING PROCESSES

Sand Casting: Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Moulding sand Properties and testing – Cores –Types and applications – Moulding machines– Types and applications; Melting furnaces: Blast and Cupola Furnaces; Principle of special casting processes: Shell - investment – Ceramic mould – Pressure die casting -Centrifugal Casting – CO₂ process – Stir casting; Defects in Sand casting. Numerical problems involving calculation of cooling time, fluid flow in the mold.

JOINING PROCESSES

Operating principle, basic equipment, merits and applications of: Fusion welding processes: Gas welding - Types – Flame characteristics; Manual metal arc welding – Gas Tungsten arc welding - Gas metal arc welding – Submerged arc welding – Electro slag welding; Operating principle and applications of: Resistance welding – Plasma arc welding – Thermit welding – Friction welding and Friction Stir Welding; Brazing and soldering; Weld defects: types, causes and cure. Laser beam welding. Numerical problems involving heat output and power requirement in electric arc/resistance welding.

METAL FORMING PROCESSES

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging – forging operations. Rolling of metals– Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts. Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion. Numerical problems involving change in size of forged components, forging force, rolling bite angle, rolling force, draft.

9

9

9

SHEET METAL PROCESSES

Sheet metal characteristics – shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods – special forming processes-Working principle and applications – Hydro forming – Rubber pad forming Metal spinning– Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Introduction to Micro forming. Numerical problems on die and punch clearance, shearing force, bending force, drawing blank size calculations.

MANUFACTURE OF PLASTIC COMPONENTS

Types and characteristics of plastics – Moulding of thermoplastics – working principles and typical applications – Injection moulding – Plunger and screw machines – Compression moulding, Transfer Moulding – Typical industrial applications – Introduction to blow moulding –Rotational moulding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics.

d. Activities

Students shall be given practical exposure in preparing green sand moulding and welding at Manufacturing Technology laboratory.

e. Learning Resources

Text Books

- Hajra Chouldhary S.K and Hajra Choudhury. AK., *Elements of workshop Technology*, Volume I and II, 15th edition, Media promoters and Publishers Private Limited, Mumbai, 2010.
- 2. Kalpakjian. S, *Manufacturing Engineering and Technology*, Pearson Education8th Edition, 2020.

Reference Books

1. Gowri P. Hariharan, A.Suresh Babu, *Manufacturing Technology I*, Pearson Education, 2011.

Course Code	Course Name	L	Т	Р	С
ME2205	COMPUTER AIDED MACHINE DRAWING	0	0	4	2

Category: Professional Core Courses

a. Preamble

This course introduces the CAD Standards and families the conversion from Isometric to 2D

CAD.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Describe the Indian Standards on drawing practices and	
CO1	standard components.	K2
CO2	Draw assembly drawings using manual drafting.	K3
CO3	Create the 2D drawing manually from Isometric view.	K3
CO4	Draw part drawing using 2D drafting AUTOCADsoftware.	K3
CO5	Draw assembly drawing using AUTOCAD software.	K3

c. Course Syllabus

Total: 60 Periods

DRAWING STANDARDS & FITS AND TOLERANCES

Code of practice for Engineering Drawing, BIS specifications – Welding symbols, riveted joints, keys, fasteners – Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc. - Limits, Fits – Tolerancing of individual dimensions – Specification of Fits – Preparation of production drawings and reading of part and assembly drawings, basic principles of geometric dimensioning & Tolerancing.

INTRODUCTION TO 2D DRAFTING

Drawing, Editing, Dimensioning, Layering, Hatching, Block, Array, Detailing, Detailed drawing - Bearings - Bush bearing, Plummer block - Valves – Safety and non-return valves. Minor losses.

2D GEOMETRIC MODELING AND ASSEMBLY

Assembly of Flange Coupling – Assembly of Muff Coupling – Assembly of Knuckle Joint – Assembly of Sleeve and Cotter Joint – Assembly of Stuffing Box – Assembly of Screw Jack - Assembly of Machine vice.

12

12

INTRODUCTION TO 3D MODELLING

Introduction to Extrude, Revolve, Sweep, Loft, Fillet, Chamfer, Pattern, Mirror in AutoCAD using basic primitives.

Note: 25% of assembly drawings must be done manually and remaining 75% of assembly drawings must be done by using AUTOCAD software.

d. Activities

Students shall be exposed to the Isometric to 2D Diagram conversion using AUTOCAD Software and Manually.

e. Learning Resources

Text Books

 Gopalakrishna K.R, *Machine Drawing*, 22nd Edition, Subhas Stores Books Corner, Bangalore, 2013.

Reference Books

- 1. N. D. Bhatt and V.M. Panchal, *Machine Drawing*, 48th Edition, Charotar Publishers, 2013.
- 2. S. Trymbaka Murthy., A Text Book of Computer Aided Machine Drawing.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S. No.	Description of Equipment	Quantity Required
1.	Intel core 2 duo or above versions of processor with 2GB RAM.	30 Nos
2.	AUTOCAD software for Drafting and Modeling.	30 Licenses
3.	Laser Printer.	1 No

Course Code	Course Name	L	Т	Р	С
EE2209	ELECTRICAL ENGINEERING LABORATORY	0	0	4	2

Category: Foundation Course (Engineering Science)

a. Preamble

This course introduces the concepts of various electrical and electronic components. It includes the different types of DC and AC starters, design of simple digital circuits and standard tests on basic electrical machines used in domestic and industrial applications.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
CO1	Analyze the characteristics of semiconductor devices.	K3
CO2	Demonstrate the working of simple digital logic circuits.	K3
CO3	Analyze the various characteristics of AC and DCMachines.	К3
CO4	Evaluate the performance of single phase Transformer.	К3
CO5	Illustrate the necessity of AC and DC starters.	К3

c. Course Syllabus

Total: 60 Periods

- 1. Verification of Ohm's Law & Kirchhoff's Laws.
- 2. Characteristics of PN Junction Diode.
- 3. Study of Logic gates.
- 4. O.C.C & Load characteristics of DC self-excited Shunt generator.
- 5. Load test on DC Series motor.
- 6. Speed control of DC Shunt motor (Armature, Field control).
- 7. O.C & S.C test on a single phase transformer.
- 8. Load test on three phase squirrel cage Induction motor.
- 9. Speed control of three phase slip ring Induction motor.
- 10. Study of DC & AC Starters.

d. Activities

Students shall be exposed to the hands on experience on different machine parts, starters and the drive in the college premises.

e. Learning Resources

Reference Books

- 1. Nagrath.I.J. & Kothari.D. P, *Electrical Machines*, Tata McGraw-Hill, 2006
- 2. Sudhakar A and Shyam Mohan SP, *Circuits and Network Analysis and Synthesis*, McGraw Hill, 2015.
- 3. Bell, D.A., 2009. *Fundamentals of electronic devices and circuits*. Oxford University Press, Inc.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S. No.	Description of Equipment	Quantity Required
1.	Semiconductor device (PN Junction Diode).	5
2.	Resistors, Capacitors and inductors.	15 each
3.	Necessary digital ICs and Trainer Kit.	1
4.	Regulated 3 output Power Supply 5, \pm 15V.	5
5.	Bread boards.	5
6.	DC self-excited Shunt generator coupled with DC shunt motor.	1
7.	DC Shunt Motor.	1
8.	DC Series Motor with Loading Arrangement.	1
9.	Single Phase Transformer.	1
10.	Three Phase Squirrel cage Induction Motor.	1
11.	Three Phase Slip ring Induction Motor.	1
12.	Three Phase Resistive Loading Bank.	1

Course Code	Course Name	L	Т	Р	С
EM2202	INTERPERSONAL SKILLS – LISTENING AND SPEAKING	0	0	2	1

Category: Employability and Enhancement courses

a. Preamble

The Course will enable learners to:

- Equip students with the English language skills required for the successful undertaking of academic studies with primary emphasis on academic speaking and listening skills.
- Provide guidance and practice in basic general and classroom conversation and to engage in specific academic speaking activities.
- Improve general and academic listening skills.

Make effective presentations

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Develop their communicative competence in English with	K3
CO1	specific reference to listening.	
CO2	Prepare conversation with reasonable accuracy.	K3
CO3	Apply lexical Chunking for accuracy in speaking.	K3
CO4	Demonstrate their ability to communicate effectively inGD's.	K3
	Explain directions and instructions in academic and business	K3
CO5	contexts.	

c. Course Syllabus

Total: 30 Periods

6

6

LISTENING AS A KEY SKILL

Listening as a key skill- its importance- speaking – give personal information – ask for personal information – express ability – enquire about ability – ask for clarification - Improving pronunciation– pronunciation basics — stressing syllables and speaking clearly – intonation patterns – conversation starters: small talk.

LISTEN TO A PROCESS INFORMATION

Listen to a process information- give information, as part of a simple explanation — taking lecture notes – preparing to listen to a lecture – articulate a complete idea as opposed to

producing fragmented utterances - compare and contrast information and ideas from multiple sources- converse with reasonable accuracy over a wide range of everyday topics.

LEXICAL CHUNKING

Lexical chunking for accuracy and fluency- factors influence fluency, deliver a five- minute informal talk – greet – respond to greetings – describe health and symptoms – invite and offer –accept – decline – take leave – listen for and follow the gist- listen for detail.

GROUP DISCUSSION

Being an active listener: giving verbal and non-verbal feedback – participating in a group discussion – summarizing academic readings and lectures conversational speech listening to and participating in conversations – persuade- negotiate disagreement in group work.

GROUP & PAIR PRESENTATIONS

Formal and informal talk – listen to follow and respond to explanations, directions and instructions in academic and business contexts – strategies for presentations and interactive communication – group/pair presentations.

d. Activities

Students shall be taken to the Language lab for enhancing their listening and speaking skills.

e. Learning Resources

Text Books

- 1. Brooks, Margret, *Skills for Success. Listening and speaking. Level 4*, Oxford University Press, Oxford, 2011.
- 2. Richards, C, Jack and David Bholke, *Speak Now Level 3*, Oxford University Press, Oxford, 2010.

Reference Books

- 1. Bhatnagar, Nitin and Mamta Bhatnagar, *Communicative English forEngineers and Professionals*, Pearson, New Delhi, 2010.
- 2. Hughes, Glyn and Josephine Moate, *Practical English Classroom*, Oxford University Press, Oxford, 2014.
- 3. Vargo, Mari, *Speak Now Level 4*, Oxford University Press, Oxford, 2013.
- 4. Richards, C, Jack, *Person to Person (Starter)*, Oxford University Press, Oxford, 2006.
- 5. Ladousse, Gillian Porter, *Role Play*. Oxford University Press, Oxford, 2014.

6

6

WEB RESOURCES

- 1. https://www.cambridge.org/elt/blog/wp-content/uploads/2019/10/Learning-Language-in-Chunks.pdf.
- 2. https://english.eagetutor.com/english/628-how-to-greet-your-boss-people-in-office.html.
- 3. https://www.groupdiscussionideas.com/group-discussion-topics-with-answers/
- 4. https://www.bbc.co.uk/worldservice/learningenglish/business/talkingbusiness/ unit3presentations/10pening.shtml.
- https://www.cambridge.org/elt/blog/wp-content/uploads/2019/10/Learning-Language-in-Chunks.pdf.

Course Code	Course Name	L	Т	Р	С
MA2254	PROBABILITY, STATISTICS AND NUMERICAL METHODS	3	1	0	4

Category: Foundation Course (Engineering Science)

a. Preamble

This course introduces the basic concepts and techniques of Random variables, Probability distributions, Testing of Hypothesis, Design of Experiments and Numerical Methods and highlights their applications in various fields such as Engineering and Technology.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Apply the concepts of probability distributions to solve	
CO1	engineering problems.	K3
	Apply the concept of testing of hypothesis for small and	
CO2	large samples in real life problems.	K3
	Apply the basic concepts of classifications of design of	
CO3	experiments in Engineering.	K3
	Compute intermediate values of unknown function using	
CO4	interpolation.	K3
	Apply the numerical techniques of integration for engineering	K3
CO5	problems.	

c. Course Syllabus

Total: 60 Periods

12

12

PROBABILITY AND RANDOM VARIABLES

Probability – Conditional Probability – Baye's Theorem – Random variables – Mathematical Expectations – Moments – Moment generating functions – Distributions: Binomial, Poisson, Geometric, Uniform, Exponential and Normal distributions.

TESTING OF HYPOTHESIS

Sampling distributions – Statistical Hypothesis – Type I and Type II errors – Tests for single mean and difference of means of large samples (Z – test) and small samples (t - test) - F - test for variance – Chi-square test for goodness of fit – Independence of attributes.

DESIGN OF EXPERIMENTS

Basic Principles of Experimental Design – Completely randomized design – Randomized block design – Latin square design – 22 factorial designs.

INTERPOLATION AND APPROXIMATION

Difference operators and relations – Interpolation with equal intervals: Newton's forward and backward difference formulae – Cubic Splines – Interpolation with unequal intervals: Lagrange's interpolation – Newton's divided difference interpolation.

NUMERICAL INTEGRATION AND INITIAL VALUE PROBLEMS 12

Numerical Integration: Trapezoidal – Simpson's 1/3rd rule and 3/8th rule (double integration excluded) – Two point and three point Gaussian quadrature formulae – Single step methods: Euler's method – Modified Euler's method – Fourth order Runge – Kutta method for solving first order equations.

d. Activities

Students shall be exposed to Microsoft Excel for Design of Experiments and MATLAB programming to solve ordinary differential equations with initial condition.

e. Learning Resources

Text Books

- 1. Grewal, B.S., Numerical Methods in Engineering and Science, Eighth Edition Reprint, Khanna Publishers, New Delhi, India, 2018.
- 2. Johnson, R.A, Miller, I., & Freund, J.E, Miller & Freund's Probability and Statistics for Engineers, Eighth Edition, Pearson Education, Asia, 2015.

Reference Books

- Gerald, C.F, Wheatley, P.O, Applied Numerical Analysis, Seventh Edition, 1. Pearson Education, Asia, New Delhi, 2007.
- 2. Walpole, R.E., Myers, R.H., Myers, S.L., & Ye, K. Probability and Statisticsfor Engineers and Scientists, Ninth Edition, Pearson Education, Asia, 2012.
- Kandasamy, P, Thilagavathy, K, & Gunavathy, K, Numerical Methods, Third 3. Edition Reprint, S. Chand & Co. Ltd., New Delhi, 2014.
- Gupta, S.C, & Kapoor, V.K, Fundamentals of Mathematical Statistics, Twelth 4. Edition Reprint, Sultan Chand & Sons, 2020.
- Veerarajan, T, Probability, Statistics and Random Processes, FourthEdition, 5. Tata McGraw Hill Education, New Delhi, 2014.

Course Code	Course Name	L	Т	Р	С
ME2251	ENGINEERING MATERIALS AND	3	0	0	3
	METALLURG	5	U	U	5

Category: Professional Core courses

a. Preamble

To impart knowledge on the structure, properties, treatments, testing and applications of metals and non-metallic materials so as to identify and select suitable materials for various engineering applications.

b. Course Outcome

After successful completion of the course, the students will be able to

	a Course Outcome	
CO. 110.		Level
CO1	Explain the microstructure of steel and its classifications .	K2
CO2	Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.	К2
CO3	Describe the effect of alloying elements on ferrous and non- ferrous metals.	K2
CO4	Summarize the properties and applications of non-metallic materials.	K2
CO5	Explain the testing of mechanical properties .	K2

c. Course Syllabus

Total: 45 Periods

9

ALLOYS AND PHASE DIAGRAMS

Constitution of alloys – Solid solutions, substitution and interstitial – Phase diagrams – Isomorphous, eutectic, eutectoid, peritectic, and peritectoid reactions, Iron –carbon equilibrium diagram. Classification of steel and cast-iron microstructure, properties and applications.

HEAT TREATMENT

Definition – Full annealing, stress relief, recrystallization and spheroidising – normalising, hardening and tempering of steel. Isothermal transformation diagrams – Cooling curves superimposed on I.T diagram CCR – Hardenability, Jominy end quench test – Austempering, martempering – case hardening, carburizing, Nitriding, cyaniding, carbonitriding – Flame and Induction hardening – Vacuum and Plasma hardening.

FERROUS AND NON-FERROUS METALS

Effect of alloying addition on steel – α and β stabilisers – stainless and tool steels –HSLA, Maraging steels – Cast iron –Grey, white, malleable, spheroidal –Alloy cast irons, Copper and copper alloys – Brass, Bronze and Cupronickel – Aluminium and Al-Cu –Precipitation strengthening treatment – Bearing alloys, Mg-alloys, Ni-based super alloys and Titanium alloys.

NON-METALLIC MATERIALS

Polymers –types of polymers, commodity and engineering polymers –Properties and applications of various thermosetting and thermoplastic polymers (PP, PS, PVC, PMMA, PET, PC, PA, ABS, PI, PAI, PPO, PPS, PEEK, PTFE, Polymers- Urea and Phenol formaldehydes) –Engineering Ceramics – Properties and applications of Al₂O₃, Sic, Si₃N₄, PSZ and SIALON –Composites – Classifications- Metal Matrix and FRP – Application of Composites.

MECHANICAL PROPERTIES AND DEFORMATION MECHANICS 9

Mechanisms of plastic deformation, slip and twinning –Types of fracture –Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), hardness tests, Impact test izod and charpy, fatigue and creep failure mechanisms

d. Activities

Students shall be exposure to understand the basics concepts of various materials and mechanical properties.

e. Learning Resources

9

i. TEXT BOOKS

- Avner, S.H., *Introduction to Physical Metallurgy*, Mc Graw Hill Book Company. 1997.
- **2.** Williams D Callister, *Material Science and Engineering*, Wiley India Pvt Ltd, Revised Indian Edition, 2014.

ii. REFERENCE BOOK

- 1. Kenneth G.Budinski and Michael K. Budinski, *Engineering Materials*, Prentice Hall of India Private Limited, 2010.
- Raghavan.V, *Materials Science and Engineering*, Prentice Hall of India Pvt.Ltd., 2015.
- U.C.Jindal, Material Science and Metallurgy, *Engineering Materials and Metallurgy*. First Edition, Dorling Kindersley, 2012.
- Upadhyay.G.S and Anish Upadhya, *Materials Science and Engineering*, Viva Books Pvt. Ltd., New Delhi, 2006.

Course Code	Course Name	L	Т	Р	С
ME2252	MANUFACTURING TECHNOLOGY – II	3	0	0	3

Category: Professional Core courses

a. Preamble

This course introduces the mechanics of metal cutting, chip formation, cutting forces developed during metal cutting. It comprehensively details the machine tools for cylindrical and prismatic jobs, gears, surface finish improvements and CNC machines.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	To calculate the tool wear and tool life by applying the	
CO1	fundamentals concepts of theory of metal cutting, chip formation	К2
	mechanism, various cutting tool materials and cutting fluids.	
	Demonstrate the metal removal processes using conventional	
CO2	lathe and drilling machines.	K2
CO3	Comprehend the various types milling, and gear cutting machine.	K2
	Illustrate the different types of grinding & broaching machines	
CO4	and their operations.	K2
	Demonstrate the elements of NC machine tools, and write	
CO5	manual part program.	K2

c. Course Syllabus

Total: 45 Periods

THEORY OF METAL CUTTING

Mechanics of chip formation, single point cutting tool, forces in machining, Types of chip, cutting tools– nomenclature, orthogonal metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.

TURNING MACHINES AND DRILLING MACHINES

Centre lathe, constructional features, specification, operations – taper turning methods, thread cutting methods, special attachments, machining time and power estimation. Capstan and turret lathes- tool layout. Drilling machine types, construction of radial drilling machine. Drilling, reaming, boring, tapping operations. Estimation of drilling time.

MILLING AND GEAR CUTTING MACHINES

9

9

Milling machine types, construction of column and knee type machines, operations-types of milling cutter. Estimation of machining time in milling. Gear cutting – forming and generation principle and construction of gear hobbing and gear shaping processes –finishing of gears.

ABRASIVE PROCESS AND BROACHING

Abrasive processes: grinding wheel – specifications and selection, types of grinding process– cylindrical grinding, surface grinding, centreless grinding and internal grinding- Typical applications – concepts of surface integrity, broaching machines: broach construction – push, pull, surface and continuous broaching machines.

9

9

CNC MACHINING

Numerical Control (NC) of machine tools – CNC types, constructional details, special features, of machining center. Manual part programs for simple milling and turning features involving only external operations – micromachining – wafer machining.

d. Activities

Students will be taught to understand the chip formation mechanism, forces in orthogonal cutting, and how to calculate machining time. Students will also be given exposure to tool layout for turret, CNC machining part program.

e. Learning Resources

Text Books

- 1. Hajra Choudhury, *Elements of Workshop Technology*, Vol.II., Media Promoters 2014.
- Rao. P.N, Manufacturing Technology Metal Cutting and Machine Tools, 4th Edition, Tata McGraw-Hill, New Delhi, 2019.

Reference Books

- Richerd R Kibbe, John E. Neely, Roland O. Merges and Warren J.White, *Machine Tool Practices*, Prentice Hall of India, 1998.
- Geofrey Boothroyd, Fundamentals of Metal Machining and Machine Tools, Mc Graw Hill, 1984.
- 3. HMT, Production Technology, Tata McGraw Hill, 1998.
- 4. Roy. A.Lindberg, *Process and Materials of Manufacture*, Fourth Edition, PHI/Pearson Education 2006.
- Kalpakjian. S, *Manufacturing Engineering and Technology*, Pearson Education 7th edition, 2018.

Course Code	Course Name	L	Т	Р	С
ME2253	STRENGTH OF MATERIALS FOR MECHANICAL ENGINEERS	3	0	0	3

Category: Professional Core courses

a. Preamble

This course promotes the students to understand the basic concepts of stress, strain, principal planes& stresses and also helps to determine stresses and deformation in circular shafts and helical spring due to torsion.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Determine the stress and strain for uniform and uniformly	
CO1	varying cross-sectional bar subjected to axial loading condition.	K3
	Calculate the torsional stress developed in circular shafts and	
CO2	springs	K3
CO3	Determine the stresses induced in thin, thick and spherical shells.	K3
	Draw the shear force, bending moment and induced stresses for	
CO4	the cantilever, simply supported and over hanging beam under	К3
	the transverse load.	
	Determine the deformation behavior of the cantilever, simply	
CO5	supported and over hanging beam under the transverse load and	K3
	understand the concept of Euler Column theory.	

c. Course Syllabus

Total: 45 Periods

STRESS, STRAIN & DEFORMATION OF SOLIDS AND PRINCIPLE STRESS AND PLANES

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses – Deformation of simple and compound bars – impact and shock loading – Thermal stresses – Elastic constants – Volumetric strains – Stresses on inclined planes – principal stresses and principal planes - Mohr's circle of stress.

TORSION

Torsion formulation stresses and deformation in circular and hollows shafts – Stepped shafts – Deflection in shafts fixed at the both ends – Stresses in helical springs – Deflection of helical springs, carriage springs.

9

THIN, THICK CYLINDER & SPHERES

Stresses in thin cylindrical shell due to internal pressure circumferential and longitudinal stresses and deformation in thin and thick cylinders – spherical shells subjected to internal pressure – Deformation in spherical shells – Lame's theorem.

TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

Beams & its types – transverse loading on beams – Shear force and bending moment in beams - Cantilevers – Simply supported beams and over hanging beams. Theory of simple bending– bending stress distribution – Load carrying capacity.

DEFLECTON OF BEAM AND EULER COLUMN THEORY

Double Integration method – Macaulay's method – Area moment method for computation of slopes and deflections in beams – Fundamentals of conjugate beam and strain energy - Maxwell's reciprocal theorem – Columns with different end conditions – Slenderness ratio – Euler's and Rankine's column theory.

d. Activities

Students shall be exposed to the different machine parts, starters and the drive in the college premises.

e. Learning Resources

Text Books

1. Bansal, R.K., *Strength of Materials*, Laxmi Publications (P) Ltd, 2016.

Reference Books

- 1. Jindal U.C., *Strength of Materials*, Asian Books Pvt. Ltd., New Delhi, 2009.
- Egor. P. Popov, *Engineering Mechanics of Solids*, Prentice Hall of India, New Delhi, 2002.
- Ferdinand P. Been, Russell Johnson, J.r.and John J. Dewole, *Mechanics of Materials*, Tata McGraw Hill Publishing 'co. Ltd., New Delhi.
- Hibbeler, R.C., *Mechanics of Materials*, Pearson Education, Low Price Edition, 2013.
- 5. Subramanian R., *Strength of Materials*, Oxford University Press, Oxford Higher Education, 2016.

9

9

Course Code	Course Name	L	Т	Р	C
ME2254	THEORY OF MACHINES	3	1	0	4

Category: Professional Core courses

a. Preamble

This course promotes the students to understand basic concepts of relative motion and their effects in various machine elements.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
CO1	Explain various components of mechanisms and its inversions used in machineries	K2
	Analyze the assembly with respect to the displacement, velocity,	
CO2	and acceleration at any point in a link of a mechanism and design cam mechanisms for specified output motions.	К3
CO3	Demonstrate the basic concepts of toothed gearing and the kinematics of gear trains	К3
CO4	Analyze the force-motion relationship in components subjected to external forces and understand the effects of unbalances resulting from prescribed motions in mechanism.	К3
CO5	Understand the effect of dynamics of undesirable vibrations.	K3

c. Course Syllabus

Total: 60 Periods

12

12

BASICS OF MECHANISMS

Classification of mechanisms – Basic kinematic concepts and definitions – Degree of freedom, Mobility – Kutzbach criterion, Gruebler's criterion – Grashof's Law – Kinematic inversions of four bar chain and slider crank chains – Limit positions – Mechanical advantage – Transmission Angle – Description of some common mechanisms – Quick return mechanisms, Straight line generators, Universal Joint – rocker mechanisms.

KINEMATICS OF LINKAGE AND CAM MECHANISMS

Displacement, velocity and acceleration analysis of simple mechanisms – Classification of cams and followers – Terminology and definitions – Displacement diagrams – Uniform velocity, parabolic, simple harmonic and Cycloidal motions.

GEARS AND GEAR TRAINS

Law of toothed gearing – Involutes and Cycloidal tooth profiles – Spur Gear terminology and definitions –Gear tooth action – contact ratio – Interference and undercutting. Helical, Bevel, Worm, Rack and Pinion gears [Basics only]. Gear trains – Speed ratio, train value – Parallel axis gear trains – Epicyclic Gear Trains.

FORCE ANALYSIS AND BALANCING

Inertia force and Inertia torque– D Alembert's principle – Dynamic Analysis in reciprocating engines – Turning moment diagrams. Static and Dynamic balancing – Balancing of revolving and reciprocating masses.

VIBRATION

Free vibrations – Equations of motion – natural Frequency – Damped Vibration – bending critical speed of simple shaft – Torsional vibration – Forced vibration – harmonic Forcing – Vibration isolation.

d. Activities

Students can work in groups to design and build a simple mechanism using everyday materials like cardboard, string, and popsicle sticks. This activity can help students understand the principles of simple machines and how they can be used to make work easier.

e. Learning Resources

Text Books

- 1. Khurmi, R.S., *Theory of Machines*, 14th Edition, S Chand Publications, 2005.
- 2. Rattan, S.S, Theory of Machines, 4th Edition, Tata McGraw-Hill, 2014.
- 3. F.B.Sayyad, *Kinematics of Machinery*. MacMillan Publishers Pvt Ltd., Tech-max educational resources, 2011.
- 4. Uicker J.J., Pennock G.R and Shigley, J.E., *Theory of Machines and Mechanisms*, 4th Edition, Oxford University Press, 2014

Reference Books

- 1. Allen S.Hall Jr., *Kinematics and Linkage Design*, Prentice Hall, 1961.
- 2. Thomas Bevan, *Theory of Machines*, 3rd Edition, CBS Publishers and Distributors, 2005.
- 3. Robert L. Norton, *Kinematics and Dynamics of Machinery*, Tata McGraw-Hill, 2009.

12

12

Course Code	Course Name	L	Т	P	C
ME2255	THERMAL ENGINEERING	3	0	0	3

Category: Professional Core courses

a. Preamble

This course promotes the students to understand basic concepts of thermodynamics and its applications.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Apply the concepts, laws and methodologies of thermodynamics	
CO1	in gas power cycles.	K3
	Understand the various terminologies of IC engines and their	
CO2	performance.	K3
CO3	Apply the thermodynamic concepts in steam turbines.	K3
	Apply the fundamental principles of thermodynamics in air	
CO4	compressors.	K3
	Apply the working principles of refrigerating and air-	
CO5	conditioning systems in calculating performance parameters.	K3

c. Course Syllabus

Total: 45 Periods

GAS POWER CYCLES

Otto, Diesel, Dual and Brayton cycle - Performance calculation, Improvisations of gas turbines – Intercooling, Reheating and Regeneration (Description only).

IC ENGINE AND ITS PERFORMANCE

Classification - Components and their function. Valve timing diagram and port timing diagram – actual and theoretical p-V diagram of four stroke and two stroke engines. Simple and complete Carburettor. MPFI, Diesel pump and injector system. Battery and Magneto Ignition System - Principles of Combustion and knocking in SI and CI Engines. Lubrication and Cooling systems. Performance calculations.

STEAM TURBINES

Impulse and Reaction principles, compounding, velocity diagrams for simple stage turbines and multi stage turbines, speed regulations – Governors.

10

9

AIR COMPRESSOR

Classification and working principle of various types of compressors, work of compression with and without clearance, Volumetric efficiency, Isothermal efficiency and Isentropic efficiency of reciprocating compressors, Multistage air compressor and inter cooling –work of multistage air compressor.

REFRIGERATION AND AIR CONDITIONING

Refrigerants - Vapour compression refrigeration system – Principles and Performance calculations- working principle of vapour absorption system, Ammonia – Water, Lithium bromide – water systems (Description only). Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures by using chart and expressions. Psychrometric process – Simple Applications. Air conditioning system - Types and Working Principles. Recent developments in HVAC systems

d. Activities

Students shall be given exposure to understand the basic concepts of thermodynamics and its applications.

e. Learning Resources

Text Books

- 1 R.K.Rajput, *Thermal Engineering*, Laxmi Publications, 2017.
- Yunus A. Cengel and Michael A. Boles., *Thermodynamics*, Tata McGraw Hill, 2018.

Reference Books

- 1. Nag.P.K, Engineering Thermodynamics, Tata McGraw Hill, 2018.
- Claus Borgnakke and Richard E. Sonntag, *Fundamentals of Thermodynamics*, Wiley Eastern, 2016.
- 3. A.Valan Arasu., *Thermal Engineering*, Vijay Nicole Imprints, 2016.

Course Code	Course Name	L	Т	Р	С
GE2251	QUANTITATIVE APTITUDE AND REASONING	1	1	0	1

Category: Employment Enhancement Course

a. Preamble

To develop the logical reasoning, thinking ability and problem solving skills of students t compete themselves in placement and competitive examinations.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
CO1	Apply and extract the data in the given patterns.	K3
CO2	Apply the concepts of quantitative aptitude to make decisions based on analysis and critique.	К3
CO3	Apply and solve the real life problems on Time, Speed and Distance.	К3

Course Syllabus c.

e. Course Syllabus	Total: 45 Periods
Unit 1	8
Percentages, Averages, Profit & Loss, Ratio & Proportion	
UNIT 2	6
Number Series, Coding and Decoding, Clocks and Calendars	
UNIT 3	6
Time, Speed and Distance, Problems on Trains, Boats and Streams, Time	e & Work

d. Learning Resources

- 1. Agarwal.R.S, Quantitative Aptitude for Competitive Examinations, S.Chand Limited 2011.
- 2. Abhijit Guha, Quantitative Aptitude for Competitive Examinations, Tata McGraw Hill, 3rd Edition, 2011.

Course Code	Course Name	L	Т	Р	С
ME2256	FLUID MECHANICS LABORATORY AND STRENGTH OF MATERIALS	0	0	3	1

Category: Professional Core courses

a. Preamble

This course introduces the concepts of various structural testing equipment and performance of various pumps and turbines

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Calculate the Coefficient of discharge and friction for the given	
CO1	various test rigs.	K3
CO2	Experiment and draw the characteristic curves of various pumps.	K3
	Experiment and draw the characteristic curves of various	
CO3	turbines.	K2
	Estimate the mechanical properties of	
CO4	materials when subjected to axial load, transverse load & shear loading.	K3
	Evaluate the properties of material by using various heat	
CO5	treatment processes.	К3

c. Course Syllabus

Total: 45 Periods

- 1. Determination of the Coefficient of discharge of given Orifice meter.
- 2. Determination of the Coefficient of discharge of given Venturi meter.
- 3. Calculation of the rate of flow using Rota meter.
- 4. Determination of friction factor for a given set of pipes.
- 5. Conducting experiments and drawing the characteristic curves of centrifugal pump.
- 6. Conducting experiments and drawing the characteristic curves of reciprocating pump.
- 7. Conducting experiments and drawing the characteristic curves of Gear pump.
- 8. Conducting experiments and drawing the characteristic curves of Pelton wheel.
- 9. Conducting experiments and drawing the characteristics curves of Francis turbine.
- 10. Conducting experiments and drawing the characteristic curves of Kaplan turbine.
- 11. Tension test on a mild steel rod.

- 12. Double shear test on Mild steel rods.
- 13. Torsion test on mild steel rod.
- 14. Impact test on metal specimen.
- 15. Hardness test on metals Brinnell and Rockwell Hardness Number.
- 16. Deflection test on beams.
- 17. Compression test on helical springs.
- 18. Strain Measurement using strain gauge.
- 19. Effect of hardening- Improvement in hardness and impact resistance of steels.
- 20. Tempering- Improvement Mechanical properties Comparison (i) Unhardened specimen (ii) Quenched Specimen and (iii) Quenched and tempered specimen.

d. Activities

Students shall be exposed to the hands on experience on different Structural testing rig pump and turbines in the college premises.

e. Learning Resources

Reference Books

- 1. Rajput. R.K, A Textbook of Strength of Materials, Chand.S, 2018.
- 2. Majumdar Bireswar, *Fluid Mechanics with Laboratory Manual*, PHI Learning Pvt Ltd., 2015.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

S. No.	Description of Equipment	Quantity Required
1.	Orifice meter setup.	1
2.	Venturimeter setup.	1
3.	Rota meter setup.	1
4.	Pipe Flow analysis setup.	1
5.	Centrifugal pump.	1
6.	Reciprocating pump setup.	1
7.	Gear pump setup.	1
8.	Pelton wheel setup.	1
9.	Francis turbine setup.	1
10.	Kaplan turbine setup.	1

S. No.	Description of Equipment	Quantity Required
11.	Universal Tensile Testing machine with double shear attachment –40 Ton capacity.	1
12.	Torsion Testing Machine (60 Nm capacity).	1
13.	Impact Testing Machine (300 J capacity).	1
14.	Brinell Hardness Testing Machine.	1
15.	Rockwell Hardness Testing Machine.	1
16.	Spring Testing Machine for tensile and compressive loads (2500 N).	1
17.	Muffle Furnace.	1
18.	Strain Gauge.	1

Course Code	Course Name	L	Т	Р	С
ME2257	MANUFACTURING TECHNOLOGY	0	0	3	1
	LABORATORY	Ũ	Ŭ	•	-

Category: Professional Core courses

a. Preamble

Students will be given hands on training/practice on sand molding, fusion and non-fusion welding, sheet metal work using hand tools, various metal cutting machine tools and CNC program and simulation. Determination of shear angle during orthogonal cutting is practiced. Students will be exposed to processing of plastic components.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Demonstrate the use of molding tools, welding processes and	
CO1	sheet metal fabrication tools.	K3
CO2	Practice making simple components comprising steps, taper, eccentric turning, knurling and thread cutting using lathe.	К3
CO3	Utilize shaping machine, milling and other machines to convert round work into other forms like hexagon and cut slot and gears.	K3
CO4	Apply various machine tools to grind specimen and tools.	K3
CO5	Construct manual part program for machining in CNC.	K3

c. Course Syllabus

Total: 45 Periods

- 1. Preparation of green sand mold.
- 2. Joining of plates using arc welding and sheets using resistance welding.
- 3. Upsetting a square head by smith forging.
- 4. Making simple sheet metal components involving shearing and bending operation.
- 5. Turing a component involving features; taper turning, knurling, grooving and thread cutting.
- 6. Eccentric turning.
- 7. Cutting internal threads.
- 8. Shaping a hexagon and slotting internal keyway.
- 9. Cutting a helical gear using horizontal milling machine.

- 10. Cutting a slot and measuring cutting force during end milling.
- 11. Surface grind square rod.
- 12. Cylindrical grinding.
- 13. Single point tool grinding.
- 14. Hobbing a spur gear.
- 15. Shear angle measurement.
- 16. Manual part program to turn a component.
- 17. Manual part program to mill a component.
- 18. Exercise on Capstan lathe.
- 19. Demonstration of plastic processing machines (Injection, blow, extrusion, and compression molding).

d. Activities

Students will be simple exercises like making sand mold using solid/split pattern, butt, lap welding, making sheet metal tray, turning, knurling, taper turning, threading, converting disc into hexagon, slot/keyway, grinding a square and cylindrical rod, grinding a single point tool and manual part program using FANUC controller.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Sl. No.	NAME OF THE EQUIPMENT	Qty.
1	Centre Lathes.	7 Nos.
2	Shaper and slotting machine.	1 No each
3	Sheet metal forming tools and equipment.	2 Nos.
4	Arc welding transformer and resistance welding unit with cables and	1 No each
	holders.	
5	Molding table, Molding equipment.	2 Nos.
6	Turret and Capstan Lathes.	1 No each
7	Horizontal Milling Machine.	1No
8	Vertical Milling Machine.	1 No
9	Surface Grinding Machine.	1 No.
10	Cylindrical Grinding Machine.	1 No.
11	Milling Tool Dynamometer.	1 No

12	Gear Hobbing Machine.	1 No
13	CNC Lathe.	1 No
14	CNC Milling machine.	1 No
15	Tool and cutter grinder.	1 No

Course Code	Course Name	L	Т	Р	С
ME2258	THEORY OF MACHINES LABORATORY	0	0	3	1

Category: Professional Core courses

a. Preamble

Students will be demonstrated with the principles learnt in Kinematics and Dynamics of Machinery.

b. Course Outcome

After successful completion of the course, the students will be able to

CO. No.	Course Outcome	Knowledge Level
	Students can able to analyze the kinematics principles of gears,	
CO1	mechanisms, cam profile.	K3
	Students will be able to understand the mass moment of inertia	
CO2	of connecting rod and turn table apparatus.	K3
CO3	Students will be able to analyze the balancing of rotary masses.	K3
	Students can be able gain hands on experience in motorized	
CO4	gyroscopic effect, couple, whirling of shaft & governors.	K3
	Students can be able gain hands on experience to determine the	
CO5	frequency of free and forced vibration, torsional vibration and	K3
	transverse vibration for shaft and spring.	

c. Course Syllabus

Total: 45 Periods

- 1. Study of gear and its parameters.
- 2. Kinematics of four bar mechanism and its inversion.
- 3. Determination of mass moment of inertia using turn table apparatus.
- 4. Determination of Mass Moment of Inertia of a connecting rod.
- 5. Motorized gyroscope.
- 6. Universal governor.
- 7. Cam.
- 8. Spring mass system.
- 9. Determination of torsional natural frequency of single and Double Rotor systems.
- 10. Tuned vibration absorber.

- 11. Determination of critical speeds of shaft.
- 12. Balancing of rotating mass.
- 13. Determination of natural frequency of a cantilever beam using transverse vibration setup.
- 14. Determination of natural frequency of a fixed beam using transverse vibration setup.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

Sl.	NAME OF THE	Qty.
No.	EQUIPMENT	
1	Cam follower setup.	1 No.
2	Motorized gyroscope.	1 No.
3	Governor apparatus - Watt, Porter, Proell and Hartnell governors.	1 No.
4	Whirling of shaft apparatus.	1 No.
5	Dynamic balancing machine.	1 No.
6	Torsional vibration setup.	1 No.
7	Spring mass vibration system.	1 No.
9	Gear Models.	1 No.
10	Kinematic Models to study various mechanisms.	1 No.
11	Turn table apparatus.	1 No.
12	Transverse vibration setup.	1 No.